Part Number Hot Search : 
2N339 DM74S157 16245 SIS990DN MBT3904 7302001 BAL99 F1B1512V
Product Description
Full Text Search
 

To Download IRFR420APBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1    
   mosfet hexfet   power mosfet  switch mode power supply (smps)  uninterruptible power supply  high speed power switching  lead-free  
    low gate charge qg results in simple drive requirement  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche voltage and current  effective c oss specified (see an 1001) v dss r ds (on) max i d 500v 3.0 ? 3.3a 
    parameter typ. max. units e as single pulse avalanche energy  ??? 140 mj i ar avalanche current  ??? 2.5 a e ar repetitive avalanche energy  ??? 5.0 mj avalanche characteristics parameter typ. max. units r jc junction-to-case ??? 1.5 r cs case-to-sink, flat, greased surface 0.50 ??? c/w r ja junction-to-ambient ??? 62 thermal resistance d-pak irfr420a i-pak irfu420a parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 3.3 i d @ t c = 100c continuous drain current, v gs @ 10v 2.1 a i dm pulsed drain current  10 p d @t c = 25c power dissipation 83 w linear derating factor 0.67 w/c v gs gate-to-source voltage 30 v dv/dt peak diode recovery dv/dt  3.4 v/ns t j operating junction and -55 to + 150 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case )

 2 www.irf.com parameter min. typ. max. units conditions g fs forward transconductance 1.4 ??? ??? s v ds = 50v, i d = 1.5a q g total gate charge ??? ??? 17 i d = 2.5a q gs gate-to-source charge ??? ??? 4.3 nc v ds = 400v q gd gate-to-drain ("miller") charge ??? ??? 8.5 v gs = 10v, see fig. 6 and 13  t d(on) turn-on delay time ??? 8.1 ??? v dd = 250v t r rise time ??? 12 ??? i d = 2.5a t d(off) turn-off delay time ??? 16 ??? r g = 21 ? t f fall time ??? 13 ??? r d = 97 ? ,see fig. 10  c iss input capacitance ??? 340 ??? v gs = 0v c oss output capacitance ??? 53 ??? v ds = 25v c rss reverse transfer capacitance ??? 2.7 ??? pf ? = 1.0mhz, see fig. 5 c oss output capacitance ??? 490 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 15 ??? v gs = 0v, v ds = 400v, ? = 1.0mhz c oss eff. effective output capacitance ??? 28 ??? v gs = 0v, v ds = 0v to 400v  dynamic @ t j = 25c (unless otherwise specified) ns s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.6 v t j = 25c, i s = 2.5a, v gs = 0v  t rr reverse recovery time ??? 330 500 ns t j = 25c, i f = 2.5a q rr reverse recoverycharge ??? 760 1140 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) diode characteristics 3.3 10  static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 500 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.60 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? ??? 3.0 ? v gs = 10v, i d = 1.5a  v gs(th) gate threshold voltage 2.0 ??? 4.5 v v ds = v gs , i d = 250a ??? ??? 25 a v ds = 500v, v gs = 0v ??? ??? 250 v ds = 400v, v gs = 0v, t j = 125c gate-to-source forward leakage ??? ??? 100 v gs = 30v gate-to-source reverse leakage ??? ??? -100 na v gs = -30v i gss i dss drain-to-source leakage current   repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 )  i sd 2.5a, di/dt 270a/s, v dd v (br)dss , t j 150c    starting t j = 25c, l = 45mh r g = 25 ? , i as = 2.5a. (see figure 12)  pulse width 300s; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss

 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.01 0.1 1 10 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 0.1 1 10 1 10 100 20s pulse width t = 150 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 0.01 0.1 1 10 4.0 5.0 6.0 7.0 8.0 9.0 v = 50v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 150 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 2.5a

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0.1 1 10 0.4 0.6 0.8 1.0 1.2 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 150 c j 0.1 1 10 100 10 100 1000 1000 0 operation in this area limited by r ds(on) single pulse t t = 150 c = 25 c j c v , drain-to-source voltage (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms 0 4 8 12 16 0 5 10 15 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 2.5a v = 100v ds v = 250v ds v = 400v ds 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd

 www.irf.com 5 fig 10a. switching time test circuit v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms  
 1     0.1 %
 
   + -  fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 0.0 1.0 2.0 3.0 4.0 5.0 t , case temperature ( c) i , drain current (a) c d 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)

 6 www.irf.com q g q gs q gd v g charge d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -
 fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v 25 50 75 100 125 150 0 50 100 150 200 250 300 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 1.1a 1.6a 2.5a fig 12d. typical drain-to-source voltage vs. avalanche current 0.0 0.5 1.0 1.5 2.0 2.5 i av , avalanche current ( a) 550 600 650 700 v d s a v , a v a l a n c h e v o l t a g e ( v )

 www.irf.com 7 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfet ? power mosfets       
         
  ?  
 ? !" #!  ? $    % &!' ' ?  (    
)%! %)! ? *+! $%!  ? ,%-!  ? *!.!$%! )% !" 

 8 www.irf.com  

  

  
         12 in the assembly line "a" as sembled on ww 16, 1999 example: wi t h as s e mb l y this is an irfr120 lot code 1234 year 9 = 199 9 dat e code we e k 16 part number logo internat ional rectifier as s e mb l y lot code 916a irf u120 34 year 9 = 1999 dat e code or p = de s i gnat e s l e ad-f r e e product (optional) note: "p" in as s embly line pos ition indicates "lead-free" 12 34 we e k 1 6 a = assembly site code part number irfu120 line a logo lot code assembly international rect ifier

 www.irf.com 9  
   
          
  as s e mb l y example: wit h as s e mb l y this is an irfu120 ye ar 9 = 199 9 dat e code line a week 19 in the assembly line "a" as s emb led on ww 19, 1999 lot code 5678 part numbe r 56 irf u120 international logo rectifier lot code 919a 78 note: "p" in as s embly line pos i ti on i ndi cates "l ead- f r ee"  56 78 as s e mb l y lot code rectifier logo int ernational irfu120 part number we e k 19 dat e code year 9 = 1999 a = as s e mb l y s i t e code p = de s i gnat e s l e ad- f r e e product (optional)

 10 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 12/04  

  
         tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRFR420APBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X